CALCULUS AB SECTION II, Part A Time—45 minutes Number of problems—3 A graphing calculator is required for some problems or parts of problems. - 1. Let R be the region bounded by the y-axis and the graphs of $y = \frac{x^3}{1+x^2}$ and y = 4-2x, as shown in the figure above. - (a) Find the area of R. - (b) Find the volume of the solid generated when R is revolved about the x-axis. - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid. - 2. The number of gallons, P(t), of a pollutant in a lake changes at the rate $P'(t) = 1 3e^{-0.2\sqrt{t}}$ gallons per day, where t is measured in days. There are 50 gallons of the pollutant in the lake at time t = 0. The lake is considered to be safe when it contains 40 gallons or less of pollutant. - (a) Is the amount of pollutant increasing at time t = 9? Why or why not? - (b) For what value of t will the number of gallons of pollutant be at its minimum? Justify your answer. - (c) Is the lake safe when the number of gallons of pollutant is at its minimum? Justify your answer. - (d) An investigator uses the tangent line approximation to P(t) at t = 0 as a model for the amount of pollutant in the lake. At what time t does this model predict that the lake becomes safe? - 3. A particle moves along the x-axis so that its velocity v at any time t, for $0 \le t \le 16$, is given by $v(t) = e^{2 \sin t} 1$. At time t = 0, the particle is at the origin. - (a) On the axes provided, sketch the graph of v(t) for $0 \le t \le 16$. (Note: Use the axes provided in the test booklet.) - (b) During what intervals of time is the particle moving to the left? Give a reason for your answer. - (c) Find the total distance traveled by the particle from t = 0 to t = 4. - (d) Is there any time t, $0 < t \le 16$, at which the particle returns to the origin? Justify your answer. **END OF PART A OF SECTION II** # CALCULUS AB SECTION II, Part B Time—45 minutes Number of problems—3 No calculator is allowed for these problems. - 4. The graph of a differentiable function f on the closed interval [-3, 15] is shown in the figure above. The graph of f has a horizontal tangent line at x = 6. Let $g(x) = 5 + \int_{6}^{x} f(t)dt$ for $-3 \le x \le 15$. - (a) Find g(6), g'(6), and g''(6). - (b) On what intervals is g decreasing? Justify your answer. - (c) On what intervals is the graph of g concave down? Justify your answer. - (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t)dt$ using six subintervals of length $\Delta t = 3$. - 5. Consider the differential equation $\frac{dy}{dx} = \frac{3-x}{y}$. - (a) Let y = f(x) be the particular solution to the given differential equation for 1 < x < 5 such that the line y = -2 is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer. - (b) Let y = g(x) be the particular solution to the given differential equation for -2 < x < 8, with the initial condition g(6) = -4. Find y = g(x). - 6. Ship A is traveling due west toward Lighthouse Rock at a speed of 15 kilometers per hour (km/hr). Ship B is traveling due north away from Lighthouse Rock at a speed of 10 km/hr. Let x be the distance between Ship A and Lighthouse Rock at time t, and let y be the distance between Ship B and Lighthouse Rock at time t, as shown in the figure above. - (a) Find the distance, in kilometers, between Ship A and Ship B when x = 4 km and y = 3 km. - (b) Find the rate of change, in km/hr, of the distance between the two ships when x = 4 km and y = 3 km. - (c) Let θ be the angle shown in the figure. Find the rate of change of θ , in radians per hour, when x = 4 km and y = 3 km. #### **END OF EXAMINATION**